Lecture 18 - Nov 11

Bridge Controller

Guard Strengthening: Review
INV Preservation: POs
INV Preservation: Commuting Diagram

Announcements/Reminders

- Today's class: notes template posted
- WrittenTest2 Wednesday (November 12)

ML-out (G) Refinement: Guard Farengthening * what's enabled in also enabled ** come scenaros aloned a+b+c=n change MI). A., Ato Ed => N ed L'M MI, ML one is enabled d when n=d s but A 75 drsabled

Discharging POs of m1: Guard Strengthening in Refinement

ML_out/GRD

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $a \in \mathbb{N}$ $b \in \mathbb{N}$ $\boldsymbol{c} \in \mathbb{N}$ a+b+c=n $a = 0 \lor c = 0$ a+b < dc = 0n < d

 $\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$

 $\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$

 $H,P \vdash P$

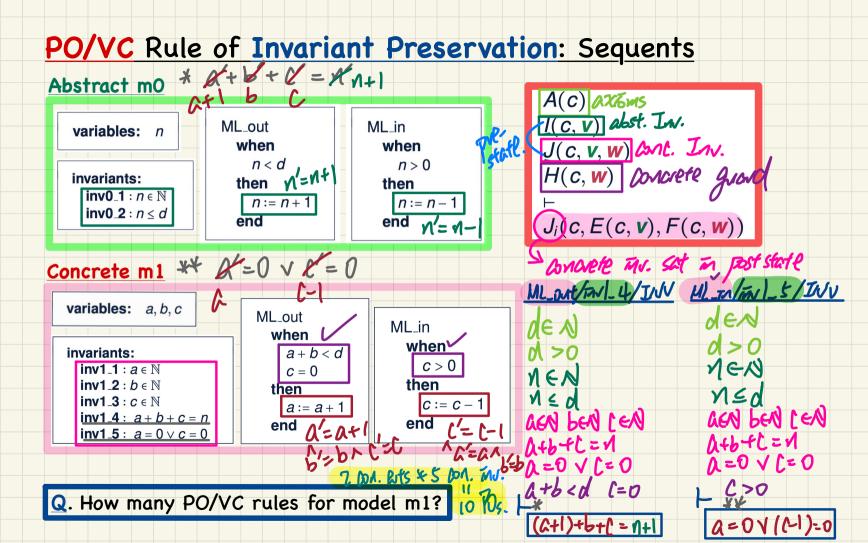
Discharging POs of m1: Guard Strengthening in Refinement

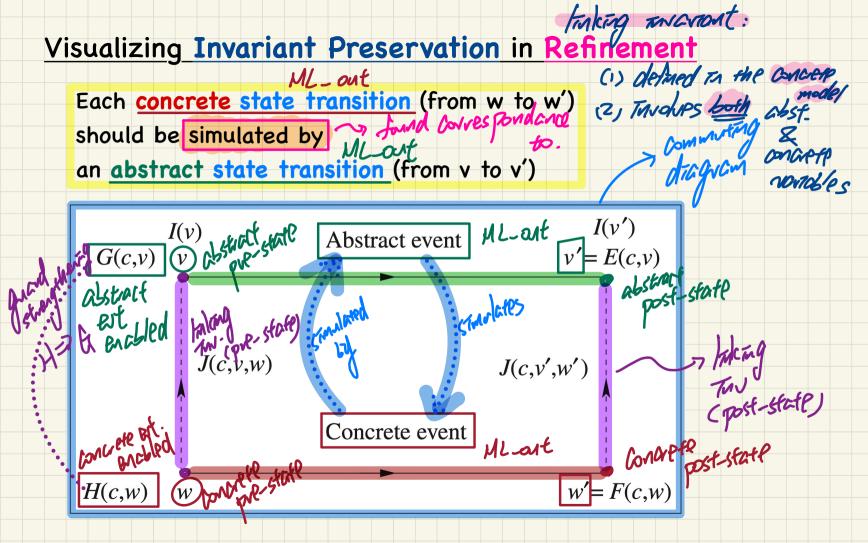
ML_in/GRD

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ n < d $a \in \mathbb{N}$ $b \in \mathbb{N}$ $\boldsymbol{c} \in \mathbb{N}$ a+b+c=n $a = 0 \lor c = 0$ c > 0

 $\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$ $H(F), E = F \vdash P(F)$

 $H,P \vdash P$ HYP $\bot \vdash P$ FALSE_L


 $H(F), E = F \vdash P(F)$ $H(E), E = F \vdash P(E)$


EQ_LR

 $H,P \vdash R \qquad H,Q \vdash R$ $H,P \lor Q \vdash R$

OR_L

n > 0

Discharging POs of m1: Invariant Preservation in Refinement

ML_out/inv1_4/INV

$$d \in \mathbb{N}$$

 $d > 0$
 $n \in \mathbb{N}$
 $n \le d$
 $a \in \mathbb{N}$
 $b \in \mathbb{N}$
 $c \in \mathbb{N}$
 $a + b + c = n$
 $a = 0 \lor c = 0$
 $a + b < d$
 $c = 0$
 $(a+1) + b + c = (n+1)$

$$\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$$

$$\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$$

Discharging POs of m1: Invariant Preservation in Refinement

PO of Invariant Establishment in Refinement

inv1 3: $c \in \mathbb{N}$ $inv1_4: a+b+c=n$ **inv1**_**5**: $a = 0 \lor c = 0$

Components

K(c): effect of abstract init

L(c): effect of concrete init

Rule of Invariant Establishment

A(c) \vdash $J_i(c, K(c), L(c))$

Exercise:

Generate Sequents from the INV rule.

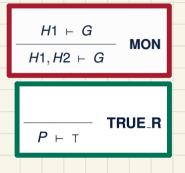
init

begin

end

a := 0

b := 0


c := 0

Q. How many PO/VC rules for model m1?

Discharging PO of Invariant Establishment in Refinement

$$d \in \mathbb{N}$$
 $d > 0$
 \vdash
 $0 + 0 + 0 = 0$

init/inv1_4/INV

$$d ∈ \mathbb{N}$$
 $d > 0$
⊢
 $0 = 0 ∨ 0 = 0$

init/inv1_5/INV